Homework Assignment-1 [Due: August 19, 2019 (during class hours)]

Q1) Use variational calculus to show that the shortest distance curve joining any two points on a plane is a straight line.

Q2) Derive the Euler-Lagrange equations for the case of functional with a single independent variable and two dependent variables, given by

$$
I=\int_{x_{1}}^{x_{2}} F\left(y_{1}, y_{1}^{\prime}, y_{2}, y_{2}^{\prime}, x\right) d x
$$

Q3) Based on the results obtained in (2) obtain the optimum functions x and y that extremize

$$
\int_{0}^{1}\left[2 x+\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}\right] d t
$$

Subject to: $x(0)=0, y(0)=0, x(1)=1.5$, and $y(1)=1$.
Q4) For attaining the equilibrium of a circular plate with radius a loaded by a force $q(r)$, the following functional has to be minimized,

$$
I=D \pi \int_{0}^{a}\left[r\left(\frac{d^{2} w}{d r^{2}}\right)^{2}+\frac{1}{r}\left(\frac{d w}{d r}\right)^{2}+2 v \frac{d w}{d r} \frac{d^{2} w}{d r^{2}}-\frac{2 q}{D} r w\right] d r
$$

where D and v are the elastic constants. Obtain the governing differential equation.

Q5) Consider a more general (three-dimensional) problem of variational calculus wherein a single dependent function u and its partial derivatives constitute the functional as given below:

$$
\iiint_{V} F\left(x, y, z, u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right) d x d y d z
$$

where, x, y, and z are the independent variables. Derive the Euler-Lagrange equation and arrive the natural and essential boundary conditions.

Q6) Consider a thin membrane of arbitrary shape simply supported on its boundary (i.e., zero displacement on the boundary). The membrane is stretched by a tensile force T which is constant everywhere in the membrane. It is also subjected to a transverse force q which is a function of x and y. Assuming small deformations, show that the static equilibrium is governed by the following differential equation written in terms of the transverse (vertical) displacement (w). Use the energy-based approach to arrive at the differential equation.

$$
\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}=-\frac{q}{T}
$$

Q7) The total potential energy for a linear elastic body is given by

$$
\Pi=\iiint_{V} U_{0} d v-\iiint_{V} b_{i} u_{i} d v-\iint_{S_{1}} t_{i} u_{i} d s
$$

Where $U_{0}=\frac{1}{2} \sigma_{i j} \varepsilon_{i j}$ is the strain energy density function, b_{i} are the components of body force/unit volume and t_{i} are the components of the traction vector applied on the surface S_{1}. The components of the displacement field are denoted by u_{i}. Show that the condition of stationary potential energy leads to the equations of stress equilibrium and the statement of the Cauchy's relation $t_{i}=\sigma_{j i} n_{j}$ on the traction boundary. Make use of the relation $\frac{\partial U_{0}}{\partial \varepsilon_{i j}}=\sigma_{i j}$ and the symmetry of the stress tensor in your derivation.

